

Visualizing Radio Propagation through Prediction

Doug Vernier Broadcaster's Clinic 2022

Standard FCC

HAAT FM - radial 3 to 16 km

Minimum of 51 elevation points along a radial

FCC Coverage CURVES F(50-50)

Interference Curves F(50-10)

K205CI BLFT19941109TJ Latitude: 33-35-47.10 N Longitude: 112-05-31.50 W ERP: 0.01 kW Channel: 205 Frequency: 88.9 MHz AMSL Height: 630.0 m Elevation: 594.86 m Horiz. Pattern: Directional Vert. Pattern: No Shadow Depth

What is the Longley-Rice Model?

"Longley-Rice", named for Anita Longley & Phil Rice in 1968, models radio propagation between 20 MHz and 20 GHz.

The model, based on electromagnetic theory and statistical analyses of terrain features and a cache of radio measurements, predicts the median attenuation of a radio signal as a function of distance and the variability of the signal in time and in space.

Mathematical Statistics

Inputs:

- Frequency (20 20,000 MHz)
- Transmitter antenna parameters:
- Transmitter antenna height (above mean sea level meters.)
- Transmitter antenna height (above ground meters.)
- Transmitter power. Transmitter antenna pattern.
- Receiver antenna height above ground meters, and gain
- System antenna polarization (vertical or horizontal)
- System Ground Conductivity (mhoS/m)
- System dielectric constant (Permittivity)
- System surface refractivity (Adjusted to sea level.)
- Climate Zone
- Time, Location and Situation Variability

Longley-Rice, as is the case of all propagation algorithms, delivers a value of attenuation at a point. Interpreting this on a larger scale is up to you. This is where visualization comes in.

Calculation of Population with No Interference

Totals for Xmit (284) to the 45 dBu, (using 30 meter terrain)

	Population	Area
Calculation Area Population:	9,471,751	[38017.9 sq. km]
Not Affected by Terrain Loss:	2,942,759	[22484.3 sq. km]
Interfered Population:	773,030	[8623.1 sq. km]
Interference Free:	2,169,729	[13861.2 sq. km]
Percent Interference:	26.27 %	
Terrain Blocked Population:	6,528,992	[15533.6 sq. km]

Interference Free Breakdown:

White:	1,380,981	[63.6%]
Black:	214,332	[9.9%]
Hispanic:	361,535	[16.7%	1
Native American:	2,131	[0.1%]
Asian:	133,528	[6.2%]
Pacific Islander:	385	[0.0%]
Mixed Race:	69,961	[3.2%]
Other:	6,876	[0.3%	1

Total: 2,169,729

ATSC 3.0 Inputs: **Channel type** - AWGN - Additive White Gaussian Noise or Rayleigh – Model of multipath and fading effects

LPDC - Low-Density Parity Check, 64,800 bits, 64k, or 16,200 bits, 16k

Modulation constellation used - QPSK, 16QAM, 64QAM, 256QAM, 1024QAM, 2048QAM

Code Rate - Forward error correction code

FFT Size, (Fast Fourier Transform) for Doppler Protection

Guard Intervals - Protection from time-delay interference caused by multi-path SFN's

Pilot Pattern - Indicates the frequency separation of pilots and the length of the scattered pilot pattern

L1D Scattered Pilot Boost - Higher pilot boosting improves channel estimation accuracy

Cred_coeff -corresponds to increased data capacity and degree of adjacent channel interference

Other inputs - the use of OET 69 & received antenna gain

J ATSC 3.0 C/N and Noise Limited Field Strength Calo	ulation X
Inputs	Outputs
Channel Type: AWGN ~	Required C/N (dB): 25.23
LDPC Code: 64800 V	Noise Level (dBu): 25.05
Modulation Type: 256QAM V	Noise Limited Field Strength (dBu): 50, 29
Code Rate: 13/15 \checkmark	
FFT Size: 32K V	
Guard Interval: GI5_1024 \lor	
Pilot Pattern: SP24_2 ~	
L 1D Scattered Pilot Boost: 1 \sim	
Cred_coeff: 0 \checkmark	
TV Channel: 31 V	
Receive Antenna Gain: OET 69 $$	
	VOK X Cancel

A few Other Propagation Models

- **PTP-2**, created by Harry Wong at the FCC, uses the terrain value for each point in the specified area of calculation
- **ITU R-P model:** Developed by the International Telecommunications Union, is used widely through out the world, except for in the U.S.
- **Cost-231/Hata** version of the COST-231 propagation model (For use in Urban Areas)
- This model uses HAAT along each radial to determine the attenuation based the equation:
- Path Loss (dB) = 46.3 + 33.9*log(F) 13.82*log(H) + [44.9 6.55*log(H)]*log(D) + C
- Okamura-Hata:
- Also, a widely used urban model, applicable for frequencies in the range 150–1920 MHz

Longley-Rice Coverage VHF repeater

VHF

Latitude: 40-47-31.03 N Longitude: 072-56-04.34 W Power: 400.00 W EIRP Used: 656.00 W Frequency: 145.21 MHz AMSL Height: 61.0 m Elevation: 0.0 m Horiz. Pattern: Omni Vert. Pattern: No Prop Model: Longley/Rice Climate: Cont temperate Conductivity: 0.0050 Dielec Const: 15.0 Refractivity: 311.0 Receiver Ht AG: 1.5 m Receiver Gain: 0 dB Time Variability: 50.0% Sit. Variability: 50.0% ITM Mode: Broadcast Legend starts at .01 mV/m ----Prepared by: Doug Vernier, K0DV Web Address: WWW.V-Soft.COM

Longley-Rice Coverage Over China

xmit

Latitude: 39-47-30 N Longitude: 116-32-39 E Power: 0.50 KW EIRP Used: 0.82 kW Channel: 214 Frequency: 90.7 MHz AMSL Height: 131.61 m Elevation: 31.61 m Horiz, Pattern: Omni Vert. Pattern: No Prop Model: Longley/Rice Climate: Cont temperate Conductivity: 0.0040 Dielec Const: 15.0 Refractivity: 310.0 Receiver Ht AG: 9.1 m Receiver Gain: 0 dB Time Variability: 50.0% Sit. Variability: 50.0% ITM Mode: Broadcast

Longley-Rice Coverage over Italy

xmit

Latitude: 41-56-39 N Longitude: 012-34-32 E Power: 100.00 kW EIRP Used: 164.00 kW Channel: 226 Frequency: 93.1 MHz AMSL Height: 180.92 m Elevation: 28.92 m Horiz, Pattern: Omni Vert. Pattern: No Prop Model: Longley/Rice Climate: Cont temperate Conductivity: 0.0040 Dielec Const: 15.0 Refractivity: 310.0 Receiver Ht AG: 9.1 m Receiver Gain: 0 dB Time Variability: 50.0% Sit. Variability: 50.0% ITM Mode: Broadcast

100.0 dBu
80.0 - 100.0
70.0 - 80.0
60.0 - 70.0
40.0 - 60.0

Thank you

Visualizing Radio Propagation

Doug Vernier Broadcaster's Clinic 2022