Changing the Landscape of FM Broadcast Antenna Technology

Presented By: Nicole Starrett

Todays Presentation

- New antenna design \bullet
 - Introducing pylon technology to FM broadcast antennas
 - What we have learned and improved since NAB
- FCC ruling on the use of simulation for FM pattern studies
 - June 2021 Filed a PRM with the FCC to allow the use of computer simulation to verify performance of directional FM antennas
 - Where it stands
 - Developing a new Artificial Intelligence (AI) approach to pattern optimization

Introduction

It's been many years since a game changing technology has been introduced into the FM broadcast antenna market

1967 – Matti Siukola – NAB paper "Dual Polarization FM Broadcasting From a Single Antenna" – BFC. Known today as the DCR-C

1978 – Don Hymas – IEEE paper "A New High Power Circularity Polarized FM Antenna" - BFM. Known today as the DCR-M

U1 Sill	iman [19]		[11] 4,109,255 [45] Aug. 22, 1978 References Cited U.S. PATENT DOCUMENTS			
[54]	OMNIDIRECTIONAL BROADBAND CIRCULARLY POLARIZED ANTENNA	[56]				
		All are	still popular c	choices in t	today's market	

- FM broadcast antenna section available today
 - Rings
 - Tillers
- Stub loops • Panels

Available Today

What about a pylon antenna for FM

- Pylon Antennas
 - Term coined by RCA
 - Top mounted slotted coaxial antenna
 - Long, thin, round structures
 - Much smaller size and less windload than other broadcast antennas
 - Simplicity
 - Very few parts and connections
 - High reliability
 - Vast majority of UHF (more recently VHF) broadcast antennas in the US are slotted coaxial "Pylon" designs

Pylon Technology - Disadvantage

- Inherently narrow bandwidth
- Most applications usage is only considered for single channel operation
- The natural bandwidth typically 1% at UHF for VSWR <1.1:1 (One channel)
- The % bandwidth is defined as: $\% bw = \frac{f_{h-}f_l}{f_0} x_{100}$

Typical 100 MHz Pylon response at UHF

Increasing the Bandwidth

- Techniques classified into two categories
 - Those that lower the "Q"
 - Those that provide external phase cancellation in the feed system
- FM pylon basic building block is a 4-bay single section
- Focus is on lowering the Q.
- The expected bandwidth within an allowable VSWR specification is given by :

 $bw = \frac{n}{Qln\left(\frac{VSWR+1}{VSWR-1}\right)}$

- Q and bandwidth are inversely proportional
- Standard pylon Q≈ 30 to 40
- Need 19% bw for FM band
- Required new Q ≈ 5 to 10 for a max 1.2:1 VSWR

 $|\emptyset_{ln}$

Increasing the Bandwidth - Techniques

- Reduce the capacitance
 - Q of a parallel resonant circuit : $Q = \omega_0 RC$
 - Q is directly proportional to capacitance

 $\begin{array}{c|c} C & \underline{def} & Q & \underline{yields} \\ \hline \end{array} & BW \end{array}$

• The capacitance of the slot network can be greatly reduced by changing the coaxial inner to a microstrip

Using a microstrip fed slot cuts the Q in half – Doubles the bandwidth

Trusted for Decades. Ready for Tomorrow.

$C_c = \frac{2\pi\epsilon_0\epsilon_r}{\ln\left(\frac{D}{d}\right)}$

$\frac{\epsilon_r L}{50v_0 \ln \left[\frac{8h}{w} + \frac{w}{4h}\right]}$

Increasing the Bandwidth - Techniques

- Babinet's Principle H.G Booker related the theory to antennas (1946)
- Slot is a complementary "dual" of a dipole
- Place a dipole and slot in the same circuit
 - Inverse response Lowers the Q
 - Tests have shown Q is cut in half
 - Doubles the operating bandwidth
- Technique also provides circular polarization
 - Parasitic dipole couples the horizontally polarized energy emanating from the slot and re-radiates it into the vertical plane

UI Sch	nited S adler	[11] [45]	Patent Numb Date of Pate		
[54]	VARIABLI ANTENNA DIPOLE	E CIRCULAR POLARIZATION A HAVING PARASITIC Z-SHAPED	Primary Examiner—Rolf Hi Assistant Examiner—Michae Attorney, Agent, or Firm—Ro		
[75]	Inventor:	John L. Schadler, Lindelwold, N.J.	Ohlandt		
[73]	Assignee:	General Signal Corporation, Stamford, Conn.	[57] A specia	ABSTH lly designed, Z-sl	
[21]	Appl. No.:	261,049	spaced ra	dially outwardly fi	
[22]	Filed:	Oct. 20, 1988	which is in a horizontally		

899.165

FM Pylon Single Section VSWR

- Testing confirms Using these Q reducing techniques allows VSWR performance < 1.2:1 across the FM band in a single 4 bay section
- Antenna tested on 25' trestle

VSWR Vs. Frequency

Polarization Ratio Stability

- Started with our standard floating tilted dipole
- Limited in bandwidth
- Wider dipole helps....

Blue – Horizontal Polarization Red – Vertical Polarization

- Not acceptable for FM full band performance
- Expand on the same simple dipole concept

Improving the Polarization Ratio Stability

- Moved to a dual parasitic floating tilted dipole
- Appling Log Periodic principals
 - Each dipole resonates at different part of the band

Variation is comparable to today's broadband single element designs

Trusted for Decades. Ready for Tomorrow.

108 MHz

Improvements to the FM Pylon - What We've Learned

- Dual dipole design compromised antenna bandwidth Babinet's principle
- Exploring options to improve bandwidth

Improvements to the FM Pylon - What We've Learned

- What about manufacturability?
 - Originally planned on a rounded extrusion
 - Transitioned to a folded box design for increased economic manufacturability
 - Continuing to explore ways to simplify design

HPOL - VPOL Pattern Congruency

- FM Pylon's free space pattern is not omni. HPOL and VPOL are not congruent
- Is this a problem?

• Side mounting to a tower creates patterns similar in nature for both the FM pylon and ring style antennas

FM Pylon typical leg mount

DCR-M Typical leg mount

Trusted for Decades. Ready for Tomorrow.

Red – VPOL

Azimuth Pattern Flexibility

- Azimuth pattern options not limited to a single bay
- Single bay can be used as an array element in a circular configuration
- Provides the same pattern flexibility as complicated panel antennas
- Patterns created by # of bays around, amplitude and phase to each face
- Configurations can be top or side mounted

Panel configuration

FM Pylon configurations

Trusted for Decades. Ready for Tomorrow.

Standard patterns to very custom patterns to fit challenging FCC protects

Elevation Pattern Flexibility

- The elevation pattern, gain, beam tilt, and null fill can be varied by stacking multiple sections
- Each section feed with an external feedline from a power divider

Elevation Patterns

Simplicity Equals Reliability

- Pylon antennas know for their simplicity
- Failure rate defined by:

- n = # of part categories $N_i =$ Quantity of ith part $\lambda_i =$ Failure rate of ith part $\pi_{Qi} =$ Quality factor of ith part
- By definition failure rate is directly proportional to the number of parts
- FM pylon has:
 - 60% less parts than equivalent ring style
 - 90% less parts than equivalent panel

Inherently makes the FM pylon more reliable than any equivalent FM broadcast antenna on the market today

Power / Voltage Handling

• The voltage safety factor of an antenna system under combined multistation operation

$$SF = \frac{.7V_{p-breakdown}}{\left(\sum_{1}^{n}\sqrt{2Z_{0}P_{avg-analog}} + \sum_{1}^{n}\sqrt{2Z_{0}P_{avg-IBOC}PAPR_{Lin}}\right)\left(\frac{2VSWR}{VSWR+1}\right)}$$

Recommended VSF's for antennas 5:1 VSF

Schadler – " ATSC 3.0 Ready – Designing Antennas for Higher OFDM PAPR", BEIT NAB 2018

Average Power (kW) per Station with -14dBc IBOC for each Using 5:1 Voltage Safety Factor

Number of stations

# Sections	1	2	3	4	5	6	7
1	30	15	10	7.5	6	5	4
2	60	30	20	15	12	10	8
3	90	45	30	22.5	18	15	12
4	120	60	40	30	24	20	16

- Extensive Hi-pot testing
 - 5:1 VSF
 - Assuming each station running -14 dBc IBOC
- FM Pylon is not voltage limited until 7 stations are combined into it
- Example Top mount omni master FM application
 - 4 Sections around will accommodate 6 stations
 - each at 20 kW with -14 dBc IBOC at a 5:1 VSF

Trusted for Decades. Ready for Tomorrow.

Schadler – " -10 dBc IBOC at Combined Transmission Sites", BEIT NAB 2015

ning -14 dBc IBOC ntil 7 stations are

er FM application commodate 6 stations c IBOC at a 5:1 VSF

Mechanical Windload Comparison

- G-Code
- 4 Bay pylon vs. 8 bay ½ wave spaced ring
 - Ring requires ½ wave spacing for bandwidth
 - Pylon has more windload but comparable 18%
 - Pylon has less windload then ring with radomes 22%
- 4 Bay top mount omni pylon vs. 3 around CBR
 - Pylon has less windload by 20%
 - Much less windload with ice 50%

$(1, \dots, n) = (n, n, n, n-1) = (1, \dots, n, n-n, n-n-1)$	EPA (ft2)
Single Section 4 Layer FM Pylon	51.1
8 Layer 1/2 Wave Spaced Ring	43.4
Side Mount FM Pylon vs Ring	118%

	EPA (ft2)		EPA (ft ²)	EPA (ft2) 1" Ice
Single Section 4 Layer FM Pylon	51.1	4 Around Top Mount FM Pylon	160.4	333
8 Layer 1/2 Wave Spaced Ring with Radome	65.7	3 Around CBR	201.6	667
Side Mount FM Pylon vs Ring	78%	Top Mount Omni FM Pylon vs CBR	80%	50%

Al Approach to FM Pattern Optimization

- June 2021 Filed a PRM with the FCC to allow the use of computer simulation to verify performance of directional FM antennas
- November 2021 Unanimous decision by the FCC to move forward with the NPRM
- FCC strong support Public comment period reduced to only 30 days
 - 2-week extension granted due to Christmas and New Year holiday
- Public comments tally
 - 18 in favor 1 opposed
 - Strong support from the Broadcast community
- The NPRM passed a final vote on the May 19th docket
- Filed with the register the following day
- Currently awaiting the Office of Management and Budget to approve
 - Expecting approval this month

imulation to verify vith the NPRM

Process for FCC Validation and Acceptance

- Each FM antenna model must be verified by submitting both simulated measurements and range measurements
- "Reasonable correlation" between the two measurements
- We use a mathematical calculation called correlation coefficient, >95%
- Once a bay is verified using a particular simulation software, the FCC will permit all subsequent directional pattern studies using the same antenna model and software to be completed by simulation
- Must cross-reference the original submission by providing the application file number

The Use of Simulation for FM DA Pattern Studies

- Petition based on the many benefits simulation has over traditional range measurements
 - Cost advantage, reflection free environment, mechanical tolerancing, human error, complete optimization, time constraints, standardization, quality, reproducibility.....

Computer Simulation Process

Choose models from controlled library + additional features Run starting pattern and compare to the FCC protect envelope

Move bay around tower for best starting location

Replace with Artificial Intelligence Optimizer (AIO)

Evaluate customers desired coverage requirements

Check for FCC compliance

Establish objectives

HFSS results exported into OptiSlang

HFSS and OptiSLang are products of Ansys Inc.

AIO Lead Time Improvement

- - Range (4.4:1 scale model range)
 - 4 hr. Setup time
 - 1 Pattern every 20 min
 - 1 Week range time
 - Total lead time = 5 days
 - 120 Iterations

AIO

- Tech hours = 80
- 1 hr. Setup time
- 20-30 hr. Cycle time
- 300-400 Iterations
- Total lead time = 2 days
- Tech hours =1

Import new model into HFSS

- The new FM Pylon broadcast antenna is unique
- Utilizes all the advantages that pylon technology has brought to UHF and VHF broadcasters for decades
 - Low windload
 - Simplicity Less parts / connections Increased reliability
 - Azimuth and elevation pattern flexibility
- Broadband and working towards full band operation
- Cost effective, simple alternative to FM element arrays as well as complicated panel antennas
- How we are preparing for the FCC ruling to allow simulation for FM pattern verification
 - The use of AIO will automate the simulation process
 - Adding a new level of efficiency and accuracy

THANKS FOR YOUR TIME!

Dielectric®

Trusted for Decades. Ready for Tomorrow.

f y 0 in D

