The Use of Computer Simulation For Directional FM Pattern Studies Presented By: John L. Schadler

Acknowledgement

S. Merrill Weiss President, Merrill Weiss Group LLC

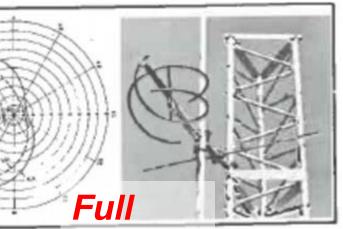
Preparation of the Petition for Rule Making (PRM) Allow the use of computer modeling to demonstrate a FM DA performs as authorized For his contributions to the subject matter

- Filed for PRM in early June
- Why?
 - History and background
 - Benefits
 - Accuracy
 - Efficiency
 - Optimization

Background - History

- Approximately 900 class A FM DA's
- Currently as found in the FCC Rules for licensing a FM DA: (Part 73.316)
 - "Applications for license upon completion of the antenna construction must include a tabulation of the measured relative field pattern"
 - Implies measurement must be done after installation
 - Rule adopted in 1963
 - Impractical
 - Wording has never been changed but at the time interpreted mean measure on a full scale range before shipment

Pattern Optimization of FM Antennas


- 1976 Matti Siukola "Pattern Optimization of FM Antennas" NAB Symposium
 - Proposed the use of parasitic elements behind a ring style FM broadcast antenna used as directors and reflectors
 - Yagi principal
 - Proposed the use of the more economical scale modeling for antenna measurement
 - 4.4:1 scaling factor
 - Became an accepted measurement method for pattern authorization

Trusted for Decades. Ready for Tomorrow.

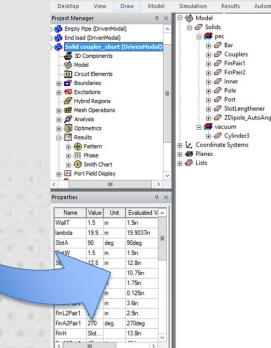
Dr. M.S. Sinkala

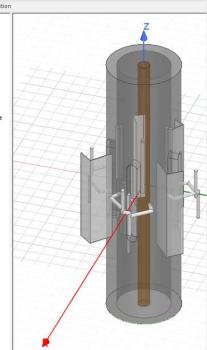
RCA Breadcast Systems Giblaboro, N.S.

Background - History

- It has now been 58 years and basically nothing has changed regarding FM antenna verification
- Interestingly..... Commission has history of accepting computer modeling
- Characterization of azimuth patterns has greatly evolved services
 - AM Broadcast (MoM) •
 - TV Broadcast (Flexible)
 - RF Exposure (Flexible)
 - Handheld devices
 - Medical devices

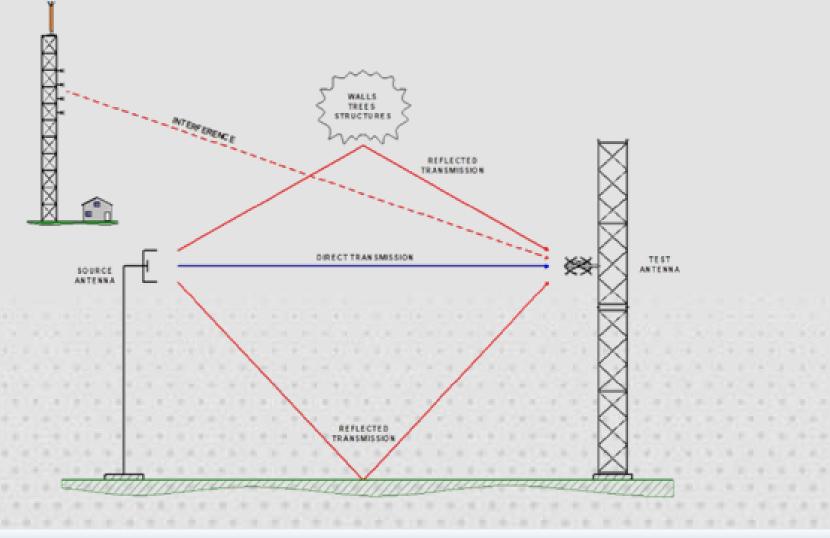
Directional FM is the only service left with the burden of building physical models and collecting measured data **Trusted for Decades. Ready for Tomorrow.**


6


Computer Modeling – TV Repack

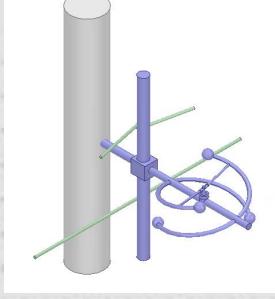
- Created a unique situation in the industry
- Aggressive timeline
- Dielectric replaced physical modeling with computer modeling in 2017
- We have shipped over 1000 antennas based on virtual designs
 - Process:
 - Reduced lead time
 - **Reclaimed manufacturing space**
 - Proved more accurate Reduced test time
- Left with a new crop of engineers "HFSS super

Safe to say that it would have been impossible to design, manufacture and test over 1000 antennas needed to successfully complete the Post- Incentive Auction Spectrum Repack in the time allowed without computer modeling **Trusted for Decades. Ready for Tomorrow.**



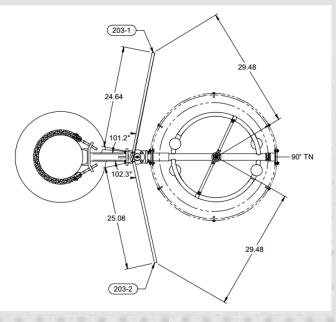
Range Measurement Accuracy

- Range accuracy depends on:
 - Alignment
 - Mechanical bore sighting
 - Reflectivity
 - Reflections
 - Range surface
 - Surrounding objects
 - Positioner
 - Cables
 - ternal interference



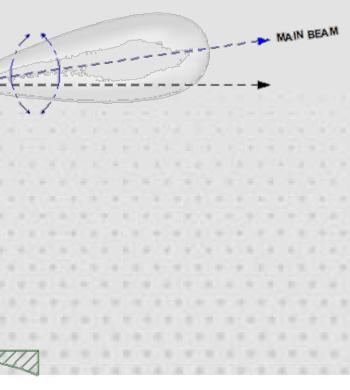
Range measurement accuracy limitations are removed with the use of computer simulation

Mechanical Tolerancing and Human Error


- Computer simulation eliminates:
 - Lengthy set-up and take down time
 - Mechanical tolerances of physical adjustments •
 - Hand recorded information Accuracy •
 - **Radiator** location
 - Parasitic sizes and locations in space

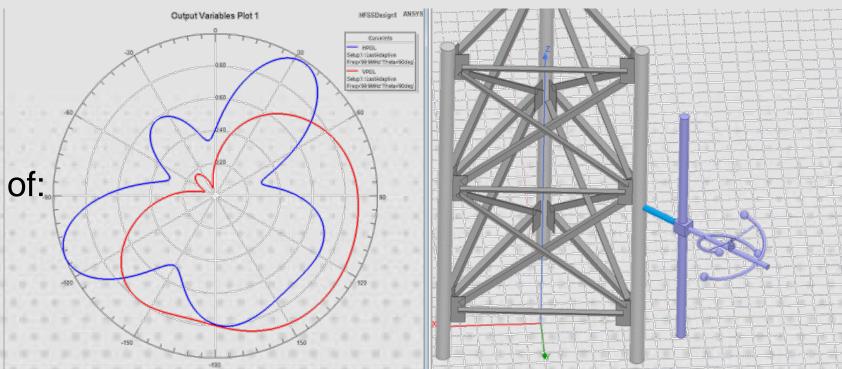
Trusted for Decades. Ready for Tomorrow.

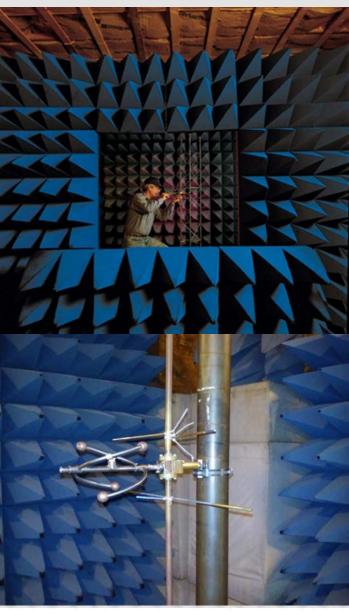
Replaced by simple exportation of the computer model



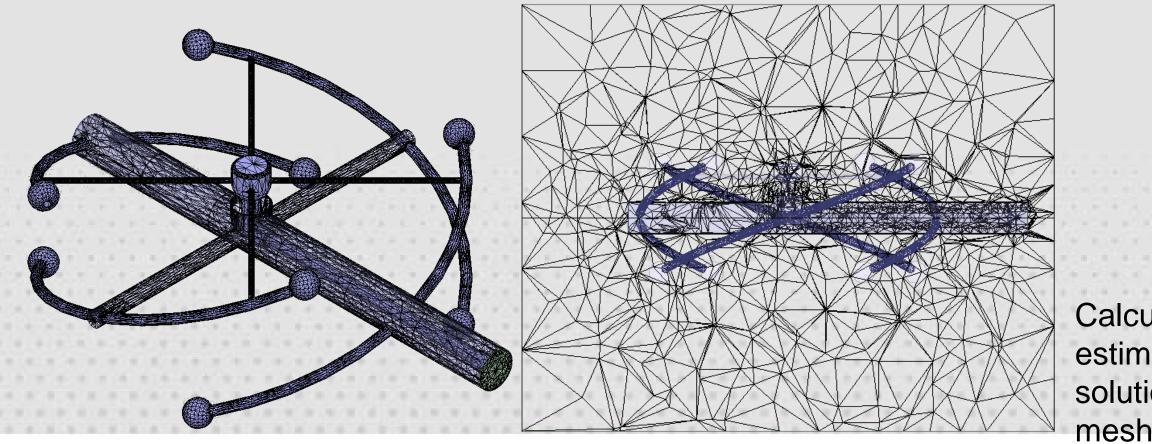
9

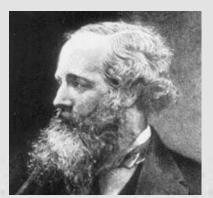
Significance of Polarization


- Rules under 47 CFR 73.316 state that the supplemental VP ERP shall in no event exceed the ERP authorized
- Broadcasters consider VPOL more important than HPOL
 - Tend to maximize VPOL
- Accurate PR measurements are important
- Accurately range measuring the H/V ratio at any point in space is difficult
 - No range is reflection free
 - H and V waves reflect differently Limits accuracy
 - Transmit antenna H/V pattern congruency
 - Source antenna beam tilt creating wobble when spun from H to V



Automated Optimization


- Designing in a virtual environment leads to complete optimization
 - Not compromised by time, materials or tolerances
- Optimetrics replaces trial and error
 - Artificial intelligence
 - Establish desired criteria
 - FCC footprint
 - % of pattern fill (85% min)
 - VPOL < HPOL
 - Directions of interest
 - Simultaneously solve combinations of:
 - Pattern shapers
 - Parasitics
 - Radiator location and direction


- Physical modeling and computational modeling of the same antenna are compared
- Physical modeling
 - 4.4:1 scale modeling
 - Scaled bay, antenna, tower
 - Scaled frequency (4.4X fundamental)
 - Anechoic chamber test range
 - Source antenna and scaled model mounted at same elevation at opposite ends of the chamber

- Computer modeling
 - ANSYS HFSS is a 3D electromagnetic (EM) simulation software tools for designing, simulating and evaluating high-frequency RF components.

Trusted for Decades. Ready for Tomorrow.

James Maxwell

Calculation is not an estimate, but an exact solution at every node in a

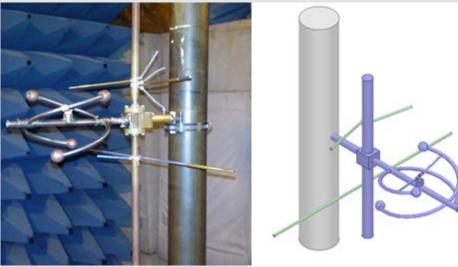
- Comparison figure of merit •
 - Correlation coefficient
 - Statistical measure of the relationship between two sets of data
 - Correlation of 1 shows perfect correlation

$$r = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum(x_i - \bar{x})^2 \sum(y_i - \bar{y})^2}}$$

$$x_i = x \text{ values in sample}$$

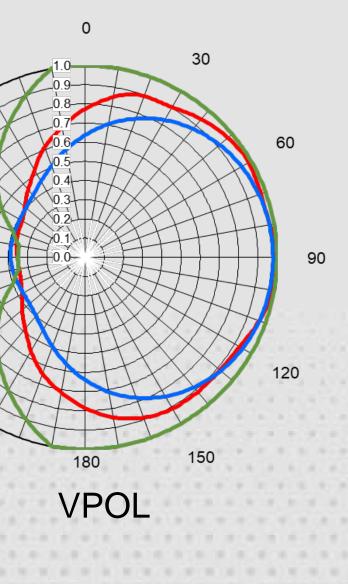
$$\bar{x} = \text{mean of the x value sample}$$

$$y_i = y \text{ values in sample}$$


$$\bar{y} = \text{mean of the y value sample}$$

Trusted for Decades. Ready for Tomorrow.

ples


0

WHEM 91.3 MHz – Eau Claire WI

330 30 330 60 300 300 270 90 270 240 240 120 180 Physical Pattern Study HFSS Simulation FCC Protect

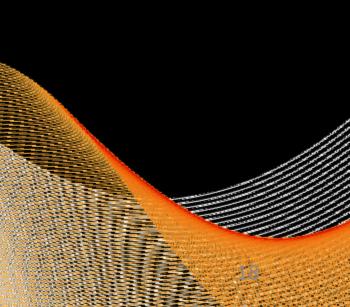
- Physical model study -2014
- Recently replicated in HFSS
- Results closely match •
- **Correlation coefficient**
 - HPOL .986
 - **VPOL** .960

Examples are an exercise to validate how good range measurements are....not validate the use of simulation...

- 1																														
		1				۰.													1.1											
	. *																													
1.1																														
+																														
																													1.1	

- 58 year old rules still mandate physical pattern measurements for directional FM licensing
- For decades, RF computational analysis has evolved
 - Accepted in all other broadcast services
- Simulation yields results that are superior to traditional range measurements
 - More reliable azimuth patterns true fee space environment
- Virtual environment eliminates:
 - Mechanical tolerancing
 - Human data error
- Computer simulation allows geometry to be completely optimized not compror by time

LONG OVERDUE!


THANKS FOR YOUR TIME!

Dielectric®

Trusted for Decades. Ready for Tomorrow.

f y 0 in D

